skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gonzalez, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vermeij, Geerat J. (Ed.)
    Continental margins host methane seeps, animal falls and wood falls, with chemosynthetic communities that may share or exchange species. The goal of this study was to examine the existence and nature of linkages among chemosynthesis-based ecosystems by deploying organic fall mimics (bone and wood) alongside defaunated carbonate rocks within high and lesser levels of seepage activity for 7.4 years. We compared community composition, density, and trophic structure of invertebrates on these hard substrates at active methane seepage and transition (less seepage) sites at Mound 12 at ~1,000 m depth, a methane seep off the Pacific coast of Costa Rica. At transition sites, the community composition on wood and bone was characteristic of natural wood- and whale-fall community composition, which rely on decay of the organic substrates. However, at active sites, seepage activity modified the relationship between fauna and substrate, seepage activity had a stronger effect in defining and homogenizing these communities and they depend less on organic decay. In contrast to community structure, macrofaunal trophic niche overlap between substrates, based on standard ellipse areas, was greater at transition sites than at active sites, except between rock and wood. Our observations suggest that whale- and wood-fall substrates can function as stepping stones for seep fauna even at later successional stages, providing hard substrate for attachment and chemosynthetic food. 
    more » « less
  2. Abstract Methane seeps are highly productive deep‐sea ecosystems reliant on chemosynthetic primary production. They are increasingly affected by direct human activities that threaten key ecosystem services. Methane seepage often generates precipitation of authigenic carbonate rocks, which host diverse microbes, and a dynamic invertebrate community. By providing hard substrate, even after seepage ceases, these rocks may promote a long‐lasting ecological interaction between seep and background communities. We analyzed community composition, density, and trophic structure of invertebrates on authigenic carbonates at Mound 12, a seep on the Pacific margin of Costa Rica, using one mensurative and two manipulative experiments. We asked whether carbonate macrofaunal communities are able to survive, adapt, and recover from changes in environmental factors (i.e., seepage activity, chemosynthetic production, and food availability), and we hypothesized a key role for seepage activity in defining these communities and responses. Communities onin situcarbonates under different seepage activities showed declining density with increasing distance from the seep and a shift in composition from gastropod dominance in areas of active seepage to more annelids and peracarid crustaceans that are less dependent on chemosynthetic production under lesser seepage. Response to changing environmental context was evident from altered community composition following (1) a natural decline in seepage over successive years, (2) transplanting of carbonates to different seepage conditions for 17 months, and (3) defaunated carbonate deployments under different seepage regimes over 7.4 yr. Seep faunas on transplants to lesser seepage emerge and recover faster than transition fauna (characterized by native seep and background faunas, respectively) and are able to persist by adapting their diets or by retaining their symbiotic bacteria. The macrofaunal community colonizing defaunated carbonates deployed for 7.4 yr developed communities with a similar successional stage asin siturocks, although trophic structure was not fully recovered. Thus, macrofaunal successional dynamics are affected by habitat complexity and the availability of microbial chemosynthetic productivity. This multi‐experiment study highlights the interaction between biotic and abiotic factors at methane seeps at different time scales along a spatial gradient connecting seep and surrounding deep‐sea communities and offers insight on the resilience of deep‐sea macrofaunal communities. 
    more » « less